Oral and Maxillofacial Tissue Engineering with Adipose-Derived Stem Cells
نویسندگان
چکیده
Oral and maxillofacial tissues are a complex array of bone, cartilage, soft tissue, nerves and vasculature. Damage to these structures, even when minimal, usually leads to noticeable deformities. Therefore, the repair of large segmental bone defects of the jaw or mandible due to trauma, inflammation, or tumor surgery remains a major clinical problem. For many years, simple autogenic, allogenic, or xenogenic bone grafts, or combinations thereof, have been the mainstay for tissue replacement [1]. However, when large bone defects are present, advanced approaches such as free tissue transfer with microvascular reanastomosis of vascularized flaps from distant sites including the fibula, iliac crest, scapula, and radius are needed to repair or regenerate a functionally complex tissue such as maxillofacial tissue [2, 3]. While these procedures have proven to be reliable and effective, they require extended hospitalization, and a secondary donor site with the associated morbidity and complications. As an alternative to current surgical techniques or approaches, developments in tissue engineering using the gene therapy and stem cell biology strive to utilize cells, biomaterial scaffolds and cell signaling factors to regenerate large oral and maxillofacial tissues defect with precise replication of normal body contours. A tissue engineering approach offers several potential benefits, including a decrease in donor site morbidity, a decrease in technical sensitivity of the repair, and the ability to closely mimic the in vivo microenvironment in an attempt to recapitulate normal craniofacial development [1].
منابع مشابه
Histological Evidences after Platelet-Rich-Plasma and Adipose Drived Stem Cells Injection on Critical Size Cleft Palate
Background Cleft palate (CP) is a common congenital defect. It makes serious difficulties for cleft-affected children. The gold standard of care is autogenous bone grafting which may cause additional problems in donor site along with disappointing results. Tissue engineering is a promising solution for a widespread range of defects and disorders. It is reasonable to utilize this novel technolo...
متن کاملInduction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System
Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...
متن کاملRadiographic comparison of the repaired bone in maxillary alveolar cleft of dog by tissue engineering and autogenous bone grafting techniques
BACKGROUND: Dental disease, trauma and maxillofacial surgeries can cause alveolar bone defects. Among different kinds of treatment, autogenous bone grafts is accepted as a golden standard. On the other hand, because of limitation of treatment with autogenous bone grafts, osteogenic cells derived from stem cells are suggested. OBJECTIVES: The aim of this study was to compare the mean density of ...
متن کاملExtract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملMesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...
متن کاملEffects of Human Adipose-derived Stem Cells and Platelet-rich Plasma on Healing Response of Canine Alveolar Surgical Bone Defects
Background: Due to the known disadvantages of autologous bone grafting, tissue engineering approaches have become an attractive method for ridge augmentation in dentistry. To the best of our knowledge, this is the first study conducted to evaluate the potential therapeutic capacity of PRP-assisted hADSCs seeded on HA/TCP granules on regenerative healing response of canine alveolar surgical bone...
متن کامل